Technology Offers Optics / Laser

COMPASS – Compact Multi-Pass Amplifier System: Leistungsstarker UKP-Laser-Verstärker (kW-Bereich)

This multi-pass amplifier concept offers a previously unequalled output power in the kW range with a compact design and various scaling and modification options.



Reliable quantification of the cw background of a pulsed laser: BIRD – Background-to-Impulse Ratio Detector

This measuring instrument is able to determine the continuous wave power share of the total power of a pulsed laser reliably. This information is very helpful for the development of pulsed lasers and also for monitoring pulsed lasers during operation. The unit can easily be integrated into existing systems.



Robust One-shot Short Coherence Interferometry ROSI

The "robust one-shot interferometry" (ROSI) developed at the University of Stuttgart has been optimized in several aspects and now offers a miniaturized, robust and long-term stable as well as high-precision point and line profile measurement at very high measurement and evaluation speeds. The system is particularly suitable for demanding applications such as inline inspection in industrial production.



Fully automated relocalization of areas of interest on any automated light microscopy system

This technique offers for the first time the possibility of reliable correlative microscopy by means of a cost-effective extension of existing systems. - Identify objects and view them in different systems without any offset!
This platform-independent method opens up a new dimension in automated microscopy and optimizes analyses in all areas of multi-scale imaging.



Glass perfectly covered or bonded – novel lamination of thin polymer layers on structured surfaces

With this new process, structured substrates can be laminated without damaging or narrowing the underlying functional structure. The method is simple and cost-effective, suitable for different materials and allows a free choice of precisely adjustable and stackable layer thicknesses.



‘Foveated Imaging’ from the 3D printer: Micro-optics with wide-angle and telephoto lens in a single device

Foveated imaging for conventional image sensors with constant pixel pitch, cost-effectively manufactured in the smallest space. The functionality of these optics can be compared to that of an eagle eye: despite high-resolution focusing, the viewer has a wide peripheral field of vision. This technology could revolutionize the world of miniaturized digital cameras, e.g. for medical imaging, autonomous driving and flying, and microrobotics.



Adaptive mini-lenses for high-resolution magnetic resonance imaging using integrated light microscopy

Thanks to a newly developed adaptive and interference-insensitive mini-optic, high-resolution magnetic resonance imaging can now be performed with integrated light microscopy. The combination also paves new ways for medical diagnostics.



Non-contact, simultaneous acquisition of topography and spectral data of an object

By cleverly combining two conventional methods together with a feedback strategy for mutual improvement, topography and hyperspectral measurements can now be performed in parallel on three-dimensional objects for the first time.



Refractive lenses of rolled and structured films for X-ray optical systems

The newly-invented X-ray lens allows the focusing of X-rays on a point focus of less than 10 µm diameter and also distinguishes itself through high transmissivity and low absorption losses. It is especially interesting for X-ray analysis processes for which a high radiation intensity is required since tenfold radiation intensities are achieved in the focus.
The lenses are easy to manufacture and thus cost-effective.



Simple splicing and reduced coupling losses when joining optical solid- and hollow-core fibers

Optical fibers are particularly well suited for long-distance data transmission, as the attenuation losses are significantly lower than e.g. when using copper conductors. Scientists at the University of Stuttgart  have now developed a simple and flexible method of joining solid- and hollow-core fibers that is characterized by low coupling losses and easy and flexible handling. In particular, it is suitable for liquid-filled hollow-core fibers. The method enables a durable, low-loss connection of fibers of different diameters without the application of heat required.



Marker-free chromosome screening

Researchers at Reutlingen University have succeeded in developing a label-free method for the characterization of metaphase chromosomes. The method and the corresponding analysis algorithm allow for visualization of both the chemical properties (absorption) and the morphological properties (stray light) of a chromosome. Using this method, the bands and sub-bands can be characterized with high resolution. Thus, no staining is required for unambiguous identification. The technology can be integrated into all imaging methods (e.g.microscopy).



Correction of angular errors in optical encoder readings prior to sensor signal generation

The purely optical compensation of errors in encoder readings allows for robust sensor design with alignment-free assembly of the encoder disc. Due to a diffractive compensation track the beam spot on the measuring track can be compensated prior to sensor signal generation.



Photo lubrication: Radiation-induced, reversible and irreversible modification of friction and adhesion

Funded by the Baden-Württemberg Stiftung gGmbH, KIT (Karlsruhe Institute of Technology) and Ulm University scientists have developed a procedure that enables the targeted modification of surfaces' friction and adhesion properties through irradiation with light. Depending on the application the modification may be irreversible, i. e. properties are adjusted once-only, or reversible, i. e. facilitating a switch between the minimum and maximum coefficient of friction in a selective and continuous manner. Therefore, the new technique opens up new opportunities for photo-activatable and photo-switchable applications even in the field of micro and nano systems technologies.