Technology Offers Medicine / Pharma

Efficient and safe nose-to-brain drug delivery method for treatment of central nervous system (CNS) diseases

More than a billion of people worldwide are suffering from diseases of the central nervous system (CNS). Unfortunately, most drugs have a low central bioavailability due to the blood-brain barrier which makes CNS therapy often unsatisfying. Scientists at Hochschule Biberach have developed an innovative and efficient, non-invasive intranasal drug delivery method for maximal dose delivery at the olfactory region. For this purpose a film consisting of different compounds/particles for a safe and controllable CNS disposition is formed in situ at the olfactory region. This film patch continues to adhere on the olfactory region as long as the pharmaceutically active compound is released and then disappears. The film patch residence time can be fine-tuned to patients' individual requirements. Mucosal irritations, local effects and immune interactions are significantly reduced.



Innovative method for producing analytical suspension cell lines

Analytical cell-based assays used in diverse applications such as the risk assessment of chemicals and the investigation of stem cell propagation stages, currently employ adherent cell lines. This cell type comes with serious drawbacks. Most importantly, extensive measures are needed for propagation purposes. Intriguingly, scientists at RWTH Aachen University have invented a method of stably growing any analytical (reporter) cell line in suspension. This enables high cell density growth and bulk applications towards tissue engineering, as well as toxicity testing. Furthermore, the method profoundly enhances high-throughput screening efficiency.



A strain and a method for high throughput of sugar for microbial conversion into organic synthesis products

By decoupling cell growth and productivity of biosynthesis the new method and associated Escherichia coli strain allow for an increase in productivity by a factor two to three.
This could not only be interesting for pharma industry, e.g. by increasing the capacity of insulation production, but for biotechnological synthesis of succinic acid as well. The demand for succinic acid as a component of plastics such as polyamides or polyesters is estimated to amount to 250,000 tons per year.



Marker-free chromosome screening

Researchers at Reutlingen University have succeeded in developing a label-free method for the characterization of metaphase chromosomes. The method and the corresponding analysis algorithm allow for visualization of both the chemical properties (absorption) and the morphological properties (stray light) of a chromosome. Using this method, the bands and sub-bands can be characterized with high resolution. Thus, no staining is required for unambiguous identification. The technology can be integrated into all imaging methods (e.g.microscopy).



Novel small molecule inhibitors of Focal Adhesion Kinase (FAK)

Focal adhesions are cell junctions that act as mechanical linkages between the intracellular actin cytoskeleton of a live cell and the extracellular matrix (ECM). They have a wide functional scope. In this context Focal Adhesion Kinase (FAK) plays a pivotal role. FAK is often overexpressed in tumor cells and is partly responsible for the high tissue invasiveness of the infected cells. Now "small molecules" have been developed at the University of Konstanz, Germany, that interfere with the localization and thus with FAK functioning. Therefore, these molecules can be deployed in cancer treatment as well as in the prevention and treatment of restenosis via drug-eluting stents.
The novel FAK inhibitors are highly effective, cell-penetrating, easy to sterilize and can be produced through chemically defined synthesis.



Direct programmable detection of epigenetic cytosine modifications in DNA using TALEs

Epigenetic modifications at the 5-position of cytosine in DNA provide important clues for diseases such as neurological disorders and a range of cancers. Scientists at the University of Konstanz have now developed a method which allows the direct detection, i.e. without prior chemical modification of the DNA sample, of the epigenetic modification status in the 5-position of cytosine (such as 5mC and 5hmC) in any user-defined sequence. It is a simple and reliable method with high resolution and can be combined with a multitude of detection methods. Detection both in vivo and in vitro is possible.



Ribosomal incorporation of intercalators into peptides and proteins in living organisms

At the University of Konstanz a novel method with very high selectivity has been developed, which allows the inclusion of amino acids with nucleic acid-intercalating properties into proteins and peptides. Protein- and peptide-based active pharmaceutical components often contain structures that act as intercalators. The technology uses standard protein expression methods and only requires the presence of the ncAA in the medium and the co-expression of the respective aminoacyl-tRNA synthetases as well as the tRNA. The invention has substantial potential for the development of new applications and products, in particular in the pharmaceutical and biotech fields.



In vivo screening based on fluorescence to identify novel antimicrobial substances

The hierarchical and precisely controlled process creating ribosomes in living cells is known as ribosome assembly and is relatively little researched. In the eyes of many experts the early processes in the creation of ribosomes offer attractive targets for antimicrobial agents. The systematic search for such substances is made more difficult by the fact, that currently no suitable screening processes exist.

The present invention consists of stable bacterial strains with ribosomal subunits incorporating fluorescent markers, which have growth characteristics similar to wild type, and which have an intact translation apparatus. The positioning of the fluorophores allows for disturbances in the ribosome assembly to be detected in vivo by a fluorescence-based readout process. The process has been optimized for use with multi-well plates and thus is suitable for use in high throughput screenings (HTS).



New strategy against multiresistant hospital microbe

The multiresistant hospital microbe Pseudomonas aeruginosa can form protective biofilms, which make its treatment significantly more difficult. Chronic infections, such as urinary tract infections, enterocolitis, and meningitis, can be fatal, particularly for patients with a depressed immune system. The present invention consists of compounds with high specificity and high affinity which are based on the natural ligand Mannose and act against the lectin LecB, which is a component of the biofilm. This opens the opportunity for a more effective antibiotics therapy by inhibiting the formation of the biofilm through the application of these new glycomimetics.



Early therapy of cystic fibrosis (CF)

At present only the symptoms of the hereditary disease CF, which results in death at a young age, are being treated, not the actual cause. The novel preventive therapeutic strategy consists of an early treatment of CF before any disease-specific symptoms can be detected. In animal trials the early therapy with sodium channel blocker amiloride, commencing immediately after birth, prevents the development of CF. Clinical trials of amiloride as an early intervention preventive therapy against CF are already in the planning phase.



Novel hybrid fluorescent nanoparticles with outstandingly high light intensity

Researchers at the Karlsruhe Institute of Technology (KIT) have successfully developed low-cost, fluorescent dyes with especially high light intensities. These inorganic–organic hybrid dyes can be synthesized easily and isolated, stored and redispersed in common solvents (ethanol/water). They can be excited using blue light (UV or blue light from LED) and emit depending on their composition in the blue, green, red or infrared spectrum. Preferred are applications in the field of medical diagnostic and therapeutic, advertising material and safety equipment (fluorescent marker).

In the field of biology and medicine the advantage of the inventive fluorescent dyes are their sufficient biocompatibility and highly specific signals, that don´t overlap with auto fluorescence of organs, cells and organelles. Thus the hybrid fluorescent dyes represent attractive alternatives to the widely used semiconductor quantum dots and rare earth doted oxides or fluorides.